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Security of Block Ciphers

AES — Random Secret Key K

PT CT = AESk(PT)

Y

Random Tape w —»  Attacker 4 > K’

— (secret) random permutation with a given (public) distribution
— we study the attack “on average” on the key

Definition. AES is e-secure against a class CL of attack if

VAECL Pr [A%S« = K] <e
w,K

Previous Work on Provable Security

[Shannon 49]: notion of perfect secrecy, impossibility of achieving it
[Wegman-Carter 81]: provably secure MAC with universal hashing
[Luby-Rackoff 88]: the Feistel scheme with random round function

is “almost” a random permutation

[Biham-Shamir 90]: notion of differential cryptanalysis
[Lai-Massey-Murphy 91]: notion of Markov cipher
[Matsui 93]: notion of linear cryptanalysis
[

Nyberg-Knudsen 92]: construction of cipher which is provably
resistant against differential cryptanalysis

[Matsui 96]: construction of MISTY which is provably resistant

against differential and linear cryptanalysis




Perfect Decorrelation

To the order 1:

VPT AESk(PT) has a uniform distribution

To the order 2:
VPT # PT' (AESk(PT), AESk(PT’)) has a uniform distribution

(among all (CT,CT’) such that CT # CT')

To the order d:

(among all (CTy,...,CTy) such that CT; # CT})

Resistance Against Differential Cryptanalysis

If AES has a perfect decorrelation to the order 2, then for all a # 0
and b # 0, we have

1

Dr [ABSk(PT & a) = ABSk (PT) @8] = 5y

— AES resists “on average” against any differential attack with a
fixed characteristic.




Basic Examples

The Vernam Cipher (One-time pad) [Vernam 26|
AESK(PT) =PT @ K with K ¢y {0,1}'?8

— perfect decorrelation to the order 1

Basic COCONUT Cipher
AES4 5(PT) = (AxPT)®B with (A, B) €y GF(2'%)* x GF(2'%®)

— perfect decorrelation to the order 2

Design Strategy

e we do not need “perfect” decorrelation: we tolerate imperfect
decorrelation as long as we can quantify it

e we do not want GF(2™) multiplication: we want fast software

implementations
— use the integer multiplication

e we do not want ad hoc construction: we want to get
decorrelation on arbitrary cipher by adding a few
“decorrelation modules”

— we add the
Fa () = (A X z+ B) mod p mod 2™

decorrelation module with (4, B) €y {0,...,2™ — 1}2




Decorrelation Distance

To each random mapping F' from A to B we associate the
A? x B%-matrix [F]?: the pairwise distribution matrix.

Given z = (z1,72) € A% and y = (y1,y2) € B?, we have
[F2., =Pr[F(z1) = y1, F(z2) = ya].

Definition. Given two random functions F' and G from A to B,
the pairwise decorrelation distance between F' and G s

pr [?Exl) = ?Jl] _pr [G(ml) = y1] ‘

F?2 — [G)?|| = ma
172~ [67)] me 2) = 4 G(w2) = 9

Theoretical Results

It
Fa p(z) = (Az + B) mod (2°* + 13) mod 2°*

for (A, B) €y {0,1}'?® and F* is a random function on {0, 1}%*
with a uniform distribution then

1) = [F*]] = 277

If DFCa4, B,,...,4,Bs is @ 6-round Feistel cipher in which each round

function can be written
RF;(z) = CP((Asz + B;) mod (2°* + 13) mod 2°%)

for (A1, By,...,As, Bg) €y {0,1}7%® and C* is a random
permutation on {0,1}12® with a uniform distribution then

I[DFC]* — [C*]] = 27172




Security Results

Let ¢ = ||[DEC]? — [C*]]].

For any differential or linear distinguisher, if the complexity is far
less than €1, then the success probability is negligible.

— no such attacks possible if a key is used less than 292 times.

For any iterated attack of order 1, if the complexity is far less than
e_%, then the success probability is negligible.

— no such attack possible if a key is used less than 2% times.

Iterated Attack of Order 1

Input: a cipher AES, a complexity n, a test 7, an acceptance set A
1. for ¢ from 1 to n do
(a) get a new (X,Y") pair with Y = AES(X) pair
(b) set T; = 0 or 1 with an expected value T (X,Y)
2. if (T1,...,Tn) € A accept otherwise reject

The attack is successful if AES is likely to be accepted and a
random permutation is likely to be rejected.
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The Round Function

The output of the decorrelation module is

(ARK; x R; + BRK;) mod (2% + 13) mod 2%¢

RK;

Ui

A

~— CP dec. [+—R;

A

Yr

The Confusion Permutation

We use a Round Table RT(0),...,RT(63).

Y Yr

RT o truncg




The Expansion Function

We use two linear functions EF; and EF5 and let RKy = 0.
EF,(K) and EF(K) are used exactly 4 times.

K
il < EF;, |«
RK; Enc [«
A
< EF,; |«
Implementations
microprocessor | cycles-per-bit | clock-frequency | bits-per-second
AXP 4.36 600MHz 137.6Mbps
Pentium 5.89 200MHz 34.0Mbps
SPARC 6.27 170MHz 27.1Mbps

Motorola 6805 (smart cards): one encryption within 9.80ms.




Security

Assumption:

Encgr, indistinguishable from a random permutation within 4 calls

e no differential or iterated attack of order 1 on 6 rounds

e weak keys for ARKy = ARK4 = ARKg = 0 (one out of 2192)

e exhaustive search on 80 keys within 22 years for 2°6bps possible
e 1o timing attacks (with constant-time implementations)

e no photofinishing attack (no bitslice)

e weak when reduced downto 4 rounds

Errata

Last lines of EES in the extended abstract (p. 9):

78d56ced 94640d6e £0d3d37b e67008el 86d1bf27 5b9b241d
eb64749a

X

Eq. (26) in the extended abstract (p. 8) and Eq. (22) in the full
report (p. 9):

EES = RT(0)[RT(1)|...|RT(63)|KD|KC




